МИНОР.
АЛГЕБРАИЧЕСКОЕ ДОПОЛНЕНИЕ.


К оглавлению

I. Минор

Минором  элемента  матрицы  n-го  порядка называется определитель матрицы  (n-1)-го порядка, полученный из матрицы  А  вычеркиванием  i-й строки и  j-го столбца.

При выписывании определителя  (n-1)-го порядка, в исходном определителе элементы находящиеся под линиями в расчет не принимаются.

Пример 1. Составить минор , полученную из исходной матрицы:

Решение:

.


II. Алгебраические дополнения

Алгебраическим дополнением  Аij  элемента аij матрицы  n-го порядка называется его минор, взятый со знаком, зависящий от номера строки и номера столбца:

то есть алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца – четное число, и отличается от минора знаком, когда сумма номеров строки и столба – нечетное число.

Пример 1. Найти алгебраические дополнения всех элементов матрицы

Решение:

 


III. Примеры для самостоятельного решения

I. Найти алгебраические дополнения всех элементов матрицы:

К оглавлению


 

1

2

3

Хостинг от uCoz